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Abstract

In order to understand the mechanism of the flow pattern transitions on silicon melt in Czochralski furnaces, we conducted a series of
unsteady three-dimensional numerical simulations of silicon melt flow in a slowly rotating shallow annular pool in the counter-clockwise
direction. The pool was heated from the outer cylinder and cooled at the inner cylinder. The temperature differences between the vertical
outer and inner cylinders ranged from 5 K to 28 K and annular pool rotation rate from 0 and 2 rpm. Bottom and top surfaces of the melt
pool were adiabatic. The simulation results indicate that two flow transitions occur when increasing the radial temperature difference
along the free surface. At first, the steady two-dimensional flow becomes the first hydrothermal wave and then the second hydrothermal
wave with less wave number. The critical conditions for the onset of the instability and the transition zone between the first and the sec-
ond hydrothermal wave are determined at various rotation rates. Characteristics of the steady and the three-dimensional flows are
discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that understanding transition to oscilla-
tory thermocapillary flows is important to material process-
ing. In the past few decades, there have been a large number
of linear stability analyses, experimental and numerical
studies of surface tension driven convection in open rectan-
gular and annular pools. Smith and Davis [1] performed a
linear stability analysis of a thin and infinitely extended
fluid layer with a free upper surface subjected to a horizon-
tal temperature gradient. They found two types of three-
dimensional (3D) instabilities, i.e. stationary longitudinal
rolls and oblique hydrothermal waves (HW) depending on
the Prandtl number (Pr) and the basic flow pattern, and
determined the critical Marangoni number. Garnier and
Normand [2] carried out a linear stability analysis of radial
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thermocapillary flow in an extended cylindrical geometry
for liquids with Pr = 10 and predicted that the instability
appears first near the inner cylinder. Subsequently, Zebib
[3] showed the influence of rotation on thermocapillary
instabilities by a linear stability analysis of a parallel flow
model and found that the Coriolis force must be included
in thermocapillary simulations. Le Cunff and Zebib [4] con-
firmed the significance of the Coriolis effects on thermocap-
illary instabilities in a liquid bridge of infinite length.

On the other hand, numerous experiments of thermo-
capillary flows in open cavities and annular pools are avail-
able. Kamotani et al. [5–7] conducted many microgravity
experiments on the oscillatory thermocapillary flow of sili-
cone oil in open cylindrical containers with cylindrical
diameters of 12, 20, and 30 mm, in which the liquid was
heated either by a hot solid cylinder located at the pool axis
or by a laser beam. They observed two or three lobed sur-
face temperature patterns. Mukolobwiez et al. [8] observed
HWs traveling in the azimuthal direction in a shallow
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Nomenclature

d depth, m
ez z-directional unit vector
f frequency, Hz
g gravitational acceleration, g = 9.806 m s�2

m azimuthal wave number
Ma Marangoni number
n rotation rate, rpm
p pressure, Pa
Pr Prandtl number
r radius, m
t time, s
T temperature, K
v velocity, m s�1

v velocity vector
z axial coordinate, m

Greek symbols

a thermal diffusivity, m2 s�1

b growth rate constant

cT temperature coefficient of surface tension,
N m�1 K�1

h azimuthal coordinate, rad
l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density, kg m�3

qT thermal expansion coefficient, K�1

w stream function, m3/s

Subscripts
c cold
cri critical
h hotter
i inner
m melting point
o outer
r radial
z axial
h azimuthal
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annular channel of silicone oil (Pr = 10) (depth of 1.7 mm,
width of 10 mm, and mean radius of 80 mm) heated from
the inner wall. To determine the influence of the depth
on the wavelength of HWs, Schwabe et al. [9] conducted
experiments on the thermocapillary flow in annular liquid
pools of ethanol (Pr = 17) with a thickness of 0.6–3.6 mm
(inner radius of 20 mm and outer radius of 77 mm), heated
at the inner rod. They observed short-wavelength tempera-
ture patterns with curved arms (part of spirals) in shallow
liquid pools (d < 1.4 mm) and long-wavelength tempera-
ture patterns in deeper pools (d > 1.4 mm). Garnier et al.
[10] observed HWs with spiral-like arms in an annular con-
tainer of silicone oil with the inner heated cylinder of radius
ri = 4 mm, the outer cooled container of radius
ro = 67.5 mm and the depth d = 1.2 mm or 1.9 mm. They
also observed pulsating, target-like wave patterns (i.e., con-
centric circles traveling radially outward) dominant only
near the cold inner wall and curved arms of HWs dominant
in the entire area of the liquid pool. Subsequently, Schwabe
et al. [11,12] studied experimentally thermocapillary flows
of silicone oil in a Czochralski (Cz) model system and
annular pool under normal gravity and micro-gravity.
They observed hydrothermal waves traveling on the free
surface for thin annular gaps, and found that the number
of waves increases as the Marangoni (Ma) number
increases. They also determined the critical conditions for
the incipience of oscillations under various conditions,
and recognized that gravity increased the critical Ma num-
ber. Fein and Pfeffer [13] investigated baroclinic waves in a
rotating annulus experiment using a low-Prandtl number
fluid (mercury Pr = 0.0246). They found that in mercury
baroclinic waves have a drift direction counter to the annu-
lus rotation in the low-rotation regime and a co-rotation in
the high-rotation regime. Standing waves were also
observed. Seidl et al. [14] presented the observations of azi-
muthal m-folded (m = 2,3,4, . . .) wave patterns, both by
experiments and numerical investigations. The experiments
were performed in a silicon melt without a crystal. They
found that the m-folded waves propagate in a direction
opposite to the crucible at higher crucible rotation rates.
The higher the crucible rotation rate, the faster the phase
velocity of the wave. Nakamura [15] showed the thermal
waves due to a nonaxisymmetric flow at a Czochralski-type
silicon-melt surface with a carbon-dummy crystal. They
found the thermal wave number increased as the crucible
rotation rate increased and the rotation rate of the thermal
wave was lower than the crucible rotation rate. Recently,
Azami et al. [16] observed spoke patterns on the surface
of a shallow, the Cz configuration pool of high-tempera-
ture silicon melt (3 mm and 8 mm in depth) and reported
that thermocapillary flow may play an important role in
the incipience of the 3D convection and the number of
spokes.

Numerical simulations have carried out to understand
the characteristics of thermocapillary convections. Sim
and Zebib [17] reported 3D simulations of thermocapillary
convection in an open cylindrical annulus. Four kinds of
surface temperature patterns were observed with increasing
Ma, i.e., two types of rotating patterns with two or three
lobes, and two types of pulsating patterns with two or three
lobes. Sim et al. [18] and Li et al. [19] conducted numerical
simulations of thermocapillary flow in an annular pool of
silicone oil for the same geometry as that of experiments
of Schwabe et al. [11,12] on FOTON-12, and compared
their results with the FOTON-12 microgravity experi-
ments. Shi and Imaishi [20] reported the two-dimensional
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(2D) and 3D numerical simulations of thermocapillary
flow, as well as buoyant thermocapillary flow, in the same
pool of silicone oil with the depth of 1.0 mm. With this
small depth, they believed that the thermocapillary force
was dominant and the buoyant force could be negligible.
In our previous papers [21–23], unsteady 3D numerical
simulations of thermocapillary and thermocapillary-buoy-
ancy flow in annular pool of silicon melt (Pr = 0.011)
and in shallow molten silicon pool with the Cz configura-
tion were performed, respectively. In the present study,
we report our results for effect of pool rotation on the flow
pattern transition of thermocapillary flow in a rotating
annular pool of silicon melt.

2. Model formulation

2.1. Basic assumptions and governing equations

We analyze the 3D flow of silicon melt in a shallow
annular layer of depth d, inner radius ri and outer radius
ro, with a free upper surface and solid bottom, as shown
schematically in Fig. 1. The system rotates in the coun-
ter-clockwise direction at a constant rate n (rpm) about a
vertical axis. The inner and outer cylinders are maintained
at constant temperatures Tc and Th, (Th > Tc), respectively.
The horizontal temperature gradient varies in the radial
direction. Melt convection is generated by the surface ten-
sion gradient on the free surface and rotation of annular
pool. The following assumptions are introduced in our
model: (1) Silicon melt is an incompressible Newtonian
fluid and a constant property assumption is applicable
except for the surface tension and the density in the addi-
tional buoyancy term in the radial direction. (2) The veloc-
ity is small and the flow is laminar. (3) The upper surface is
flat and nondeformable. (4) At the top free surface, the
thermocapillary force is taken into account. At other
solid–liquid boundaries, the no-slip condition is applied.

With the above assumptions, the flow and heat transfer
equations in a fixed frame are expressed as follows:

r � v ¼ 0; ð1Þ
ov

ot
þ v � rv ¼ � 1

q
rp þ mr2v� qTðT � T mÞ

v2
h

r
er; ð2Þ

oT
ot
þ v � rT ¼ ar2T : ð3Þ
Fig. 1. Configuration of the system.
The boundary conditions at the free surface (z = d,
ri < r < ro, 0 6 h < 2p),

l
ovr

oz
¼ �cT

oT
or
; ð4aÞ

l
ovh

oz
¼ �cT

oT
roh

; ð4bÞ

vz ¼ 0; ð4cÞ
oT
oz
¼ 0: ð4dÞ

At the bottom (z = 0, ri < r < ro, 0 6 h < 2p),

vr ¼ 0; ð5aÞ
vh ¼ 2pnr=60; ð5bÞ
vz ¼ 0; ð5cÞ
oT
oz
¼ 0: ð5dÞ

At the inner cylinder (r = ri, 0 6 z 6 d, 0 6 h < 2p),

vr ¼ 0; ð6aÞ
vh ¼ 2pnri=60; ð6bÞ
vz ¼ 0; ð6cÞ
T ¼ T c ¼ T m: ð6dÞ

At the outer cylinder (r = ro, 0 6 z 6 d, 0 6 h < 2p),

vr ¼ 0; ð7aÞ
vh ¼ 2pnro=60; ð7bÞ
vz ¼ 0; ð7cÞ
T ¼ T h: ð7dÞ

The initial conditions are expressed as follows (at t = 0):

vr ¼ 0; ð8aÞ
vh ¼ 0; ð8bÞ
vz ¼ 0; ð8cÞ

T ¼ T m þ ðT h � T mÞ
lnðr=riÞ
lnðro=riÞ

: ð8dÞ
2.2. Calculation conditions and numerical method

The geometric parameters for the simulation are ri =
15 mm, ro = 50 mm, d = 3 mm. The thermophysical prop-
erties of silicon melt used in this work are identical to those
in Ref. [21]. The temperature differences DT between the
vertical inner and outer cylinders ranged from 5 K to
28 K and annular pool rotation rate n from 0 and 2 rpm.

The fundamental equations are discretized by the con-
trol volume method with the modified central difference
approximation in the diffusion terms, the QUICK scheme
in the convective terms and an implicit method in time.
The SIMPLER algorithm is used to handle the pressure–
velocity coupling. The other descriptions of the mathemat-
ical model and numerical procedure can be found in Ref.
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[21]. The validity of the code for the thermocapillary flow
simulation has been well confirmed in Refs. [19–23].

3. Results and discussion

3.1. Basic flow

In the present configuration, the basic thermocapillary
flow of silicon melt in the shallow annular layer appears as
an axisymmetric steady radial flow with a single convection
roll cell when DT 6 1 K at a low fixed rotation rate. The sur-
face fluid flows from the hot outer cylinder to the cold inner
cylinder. A return flow is present near the bottom. When DT

is increased, a second co-rotating roll cell appears in melt
layers, as shown in Fig. 2. The strength of the second co-
rotating cell increases as DT increases. The annular pool
rotation suppresses the basic flow. Compared Fig. 2a and
b, it is found that the maximum stream function w(+)
decreases from 0.2 cm3/s to 0.196 cm3/s when rotation rate
increases to 0.5 rpm. The stream function w is defined as

vr ¼
1

r
ow
oz
; vz ¼ �

1

r
ow
or
:

At n = 2 rpm and DT = 12 K, the third co-rotating cell is
generated and a small counter-rotating cell appears near
the bottom and inner cylinder of the pool, as shown in
Fig. 2d. It is also found that the temperature distribution
in the radial direction is almost independent of the presence
of the annular pool rotation, since the thermal conductivity
of the silicon melt is large.
Fig. 2. Streamlines and isotherms in the melt below the critical temperature d
dT = 0.7 K. (b) n = 0.5 rpm, DT = 7 K, w(+) = 0.196 cm3/s, dT = 0.7 K. (c)
DT = 12 K, w(+) = 0.268 cm3/s, w(�) = �0.002 cm3/s, dT = 1.2 K.
When the annular pool rotates, the additional buoyancy
in the radial direction is created by the non-uniform tem-
perature distribution in the radial direction. We check the
effect of this buoyancy term on the basic flow. Simulations
with and without the additional buoyancy are performed
for n = 2 rpm and DT = 12 K. They produced almost same
flow patterns and the error of the maximum stream func-
tions is less than 1%. Therefore, the additional buoyancy
term is uninfluenced on the basic flow.

3.2. Critical temperature differences DTcri

If the annular pool is stationary (n = 0), any radial tem-
perature difference (DT > 0) produces a surface tension gra-
dient on the free surface of the melt and the Marangoni
effect induces flow in the melt layer. If DT exceeds a thresh-
old value, the hydrothermal wave is formed in the melt
layer, as discussed in Ref. [21]. When the annular pool
rotates, present numerical simulations show that during
the initial growth process the intensity of any disturbance
(dX) can also be expressed by Eq. (9),

dX ðr; h; z; tÞ ¼ dX 0ðr; h; zÞ exp½ðbþ ibIÞt�; ð9Þ
where b is the growth rate constant of the disturbance and
bI represents the time dependent oscillatory characteristics
of the disturbance. The b value can be determined from the
slope of the semi-logarithmic plot of dvh,max vs. Dt. By plot-
ting b vs DT, we can determine the critical temperature dif-
ference DTcri and wave number m at various rotation rates,
as shown in Table 1. Rotating solid walls exert a shear
ifference. dw = 0.02 cm3/s. (a) n = 0 rpm, DT = 7 K, w(+) = 0.200 cm3/s,
n = 1.0 rpm, DT = 8 K, w(+) = 0.210 cm3/s, dT = 0.8 K. (d) n = 2.0 rpm,



Table 1
The critical DTcri and m

n (rpm) DTcri (K) m

0.00 7.31 10
0.25 7.24 11
0.50 7.31 11
0.75 8.26 10
1.00 9.48 10
1.25 11.42 10
1.50 13.02 10
2.00 14.75 15

1814 Y.-R. Li et al. / International Journal of Heat and Mass Transfer 51 (2008) 1810–1817
force and induce an azimuthal flow of the melt layer, which
can suppress the radial flow and retard flow instability.
Therefore, DTcri increases with the increasing the rotation
rate.

During the determination of the critical temperature dif-
ference and wave number, non-uniform staggered grids of
62r � 20z � 163h and 82r � 24z � 243h are used with finer
meshes in the regions under the free surface and near the
bottom and sidewalls for n = (0–1.5) rpm and n = 2 rpm,
respectively. The azimuthal direction has uniform grids in
all cases. In order to check the grid convergence, simula-
tions with the different meshes are performed for
n = 1 rpm and 2 rpm. Results are shown in Table 2, which
confirm a good grid convergence.
3.3. The first hydrothermal waves

In following sections, non-uniform staggered grid of
62r � 20z � 163h is used in all cases. In order to save calcu-
lation time, we always used the result of a small DT as ini-
tial condition when increasing DT, and the result of a large
DT as one when decreasing DT.

Fig. 3 shows simulation results, including the snapshots
of distribution of surface temperature fluctuation dT and a
space-time diagram (STD) of surface temperature along a
circumference at r = 20 mm. The surface temperature fluc-
tuation dT is introduced in order to extract the 3D
disturbances:

dT ðr; h; d; tÞ ¼ T ðr; h; d; tÞ � 1

2p

Z 2p

0

T ðr; h; d; tÞdh: ð10Þ
Table 2
Effect of meshes on critical condition

Meshes DT (K) m

n = 1 rpm

62r � 20z � 163h 9.48 10
82r � 26z � 123h 9.78 10
62r � 20z � 123h 9.85 10
62r � 20z � 95h 11.98 9
62r � 20z � 63h 15.37 3

n = 2 rpm

82r � 24z � 243h 14.75 15
82r � 24z � 203h 15.05 15
62r � 20z � 123h 17.98 8

Fig. 3. Snapshots of surface temperature fluctuation (left side) and space-
time diagram of surface temperature distribution (right side). (a)
n = 0 rpm, DT = 10 K. (b) n = 0.5 rpm, DT = 10 K. (c) n = 1.0 rpm,
DT = 10 K. (d) n = 1.5 rpm, DT = 16 K. (e) n = 2.0 rpm, DT = 16 K.
Slightly above the critical condition, the hydrothermal
wave instability is dominant and many traveling curved
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spoke patterns are observed on the entire surface. In this
case, these hydrothermal waves propagate in the counter-
clockwise direction. The angle (/) between wave propaga-
tion and the radial direction, measured at r = 20 mm, is
about 75–80� for n = (0–1.5) rpm, Which is close to the an-
gle of 80� predicted by the linear stability theory for infinite
rectangular layer [1]. When n = 2 rpm, there are two re-
gions with the different angle /, which are about 75–80�
and around 25� near the outer sidewall and the inner side-
wall, respectively. We refer to these hydrothermal waves as
the first hydrothermal wave (HW1).

With the increasing the rotation rate, the hydrothermal
waves propagation velocity increases. Therefore, the incli-
nation angle of the STD of surface temperature along a cir-
cumference at r = 20 mm, which is composed of slope
straight lines, becomes small.
Fig. 5. Flow pattern transition between the HW1 and the HW2 at
n = 1.5 rpm: (a) DT = 17 K, (b) DT = 20 K, (c) DT = 21 K, and (d)
DT = 18 K.
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3.4. Flow transition process

With further increasing DT, the amplitude of surface
temperature fluctuation gradually increases. When DT

exceeds another threshold value, the second flow pattern
transition happened. Through this critical point, the wave
number m decreases abruptly from 9 or 10 to 3, as shown
in Figs. 4 and 5, and the frequency f of surface temperature
fluctuation also decreases. We refer to these hydrothermal
waves as the second hydrothermal wave (HW2). The sec-
ond threshold DT values are 15 K, 19 K and 21 K for
n = 0.5 rpm, 1.0 rpm and 1.5 rpm, respectively, when
increasing DT. Fig. 6a shows temperature variation at
monitoring point P (r = 20 mm, z = 3 mm and h = 0) as
flow pattern transition from the HW1 to the HW2. Obvi-
ously, the period of flow pattern transition is very long.
Fig. 4. Flow pattern transition between the HW1 and the HW2 at
n = 1 rpm: (a) DT = 16 K, (b) DT = 18 K, (c) DT = 19 K, and (d)
DT = 17 K.
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Fig. 6. Temperature variation at monitoring point P as flow transition
between the HW1 and the HW2. (a) Increasing DT from 18 K to 19 K, (b)
decreasing DT from 17 K to 16 K, and (c) decreasing DT from 19 K to
18 K.
Also, if we decrease the temperature difference, the HW2
becomes the HW1 again. But, the transition critical point
is retarded. The transition DTs are 13 K, 16 K and 17 K
for n = 0.5 rpm, 1.0 rpm and 1.5 rpm, respectively, when
decreasing DT. The period of flow pattern transition
becomes short, as shown in Fig. 6b and c. Therefore, the
second transition between the HW1 and the HW2 exists
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P at n = 1.5 rpm and DT = 18 K.
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hysteresis. The hysteretic temperature difference depends
on the annular pool rotation rates.

During the flow pattern transition from the HW1 to the
HW2 for n = 1.5 rpm, There coexist the HW1 and the
HW2 in the transition zone. Fig. 6c shows temperature var-
iation at monitoring point P as decreasing DT from 19 K to
18 K. Fig. 7 gives the results of Fourier spectra of temper-
ature fluctuations, in which f1 corresponds to the HW2 and
f2 to the HW1.
Fig. 8. Snapshots of surface temperature fluctuation (left side) and space-
time diagram of surface temperature distribution (right side) at
DT = 21 K: (a) n = 0.5 rpm, (b) n = 1.0 rpm, and (c) n = 1.5 rpm.
3.5. The second hydrothermal waves

When the temperature difference exceeds the second crit-
ical value, the HW2 appears on the free surface. In this case
the wave number m is 3, as shown in Fig. 8. But, the prop-
agating direction of the traveling waves depends on the
rotation rates of the annular pool. For the case of
n = 0.5 rpm, the traveling waves propagate along the
clockwise direction. When n = 1.0 rpm, the azimuthal flow
velocity of the melt layer driven by the annular pool rota-
tion is almost same as the traveling wave velocity in the
opposite direction. In this case, the traveling waves seem
stable in a fixed frame. Thus, the STD taken at
r = 20 mm is almost composed of the vertical straight lines.
Under a much higher rotation rate, for example, n =
1.5 rpm, the flow driven by the annular pool rotation is
dominant and the traveling waves propagate along the
counter-clockwise direction. The traveling velocity of
waves increases with the increasing the rotation rate of
the annular pool.
Fig. 9. Variation of traveling velocity of waves.
3.6. Stability diagram

Fig. 9 shows the variation of the traveling velocity nw of
the waves with the temperature difference DT for the case
of n = 1 rpm. In the region of small DT, the hydrothermal
waves appear and have the high traveling velocity. When
the DT exceeds the second critical value, the HW2 appears
and has very low traveling velocity.

As described in the previous parts, the basic flow is the
axisymmetric steady flow if the temperature difference DT

is small. Over this basic flow, instability appears depending
on the DT and n. To clarify the flow transitions we present
the stability diagram, as shown in Fig. 10. Depending on
the values of DT and n, four zones of the flow patterns
can be distinguished: 2D stationary flow, the HW1, transi-
tion zone and the HW2.



Fig. 10. Stable diagram of temperature difference DT versus rotation rate
n.
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4. Conclusions

A series of 3D numerical simulations of the thermocap-
illary flows in shallow annular pools of silicon melt with
slow rotation rate were conducted by means of the control
volume method. Simulations were conducted for a small
annular melt pool (ro = 50 mm and ri = 15 mm and
d = 3 mm). From the simulation results, the following con-
clusions were obtained.

1. The critical temperature differences for transition from
an axisymmetric steady flow to the hydrothermal waves
in each case were determined. The critical temperature
difference depends on the annular pool rotation rate.

2. The hydrothermal waves propagate along the counter-
clockwise direction. The traveling velocity increases with
the increasing the annular pool rotation rate.

3. The propagating direction of the traveling waves
depends on the rotation rate of the annular pool in the
oscillatory 3D flow. When the rotation rate is slow,
the waves propagated in a direction opposite to the
annular pool rotation. At higher rotation rate they have
the same direction.

4. The stability diagram is presented and four flow zones
are distinguished.
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